Landau Damping, the Caldeira-Leggett Model, and the Linearized Vlasov-Poisson System
Sherwood Meeting 2011

George I. Hagstrom Philip J. Morrison

Institute for Fusion Studies
The University of Texas at Austin
Overview: Diagonalizing Hamiltonian Systems with Continuous Spectra

- Exactly solving linear systems with continuous spectra.

- Introduce the Caldeira-Leggett model:
 - Linear Hamiltonian system used to describe dissipation in quantum mechanics.

- Derive a transformation which diagonalizes this system. Exact solution.

- Use transformation to demonstrate equivalence to linearized Vlasov-Poisson equation.

- Application: Prediction of echo effect in these systems.
Caldeira-Leggett Model: The Standard Model for a Dissipative Quantum System

- Axioms of quantum mechanics require symmetric Hamiltonian operators H, and $i\hbar \frac{\partial \psi}{\partial t} = H\psi$. Typical dissipative operators are not of this form.
- Caldeira-Leggett model was invented to include dissipation in quantum mechanics through continuum damping.
- Let the system of interest have Hamiltonian H_s. Dissipation occurs through some environment. Explicitly model the environment with H_e and coupling H_c.
- Total Hamiltonian is $H = H_s + H_c + H_e$.
- Infinite number of degrees of freedom can lead to a continuous spectrum and damping of the system of interest.
- Caldeira-Leggett model assumes the environment is a bath of oscillators with a linear coupling to the system.
Caldeira-Leggett Hamiltonian

- Consider the classical system with H_s of a simple harmonic oscillator, H_e of a continuous bath of oscillators, and H_c a simple linear coupling:

\[
H_{CL}[q, p; Q, P] = \frac{\Omega}{2} P^2 + \frac{1}{2} \left(\Omega + \int_{\mathbb{R}_+} dx \frac{f(x)^2}{2x} \right) Q^2 \\
+ \int_{\mathbb{R}_+} dx \left[\frac{x}{2} (p(x)^2 + q(x)^2) + Qq(x) f(x) \right],
\]

\[
\dot{q}(x) = xp(x) \\
\dot{p}(x) = -xq(x) - Qf(x) \\
\dot{Q} = \Omega P \\
\dot{P} = -\left(\Omega + \int_{\mathbb{R}_+} dx \frac{f(x)^2}{2x} \right) Q - \int_{\mathbb{R}_+} dx q(x)f(x).
\]
Caldeira-Leggett Model Illustration

Dashed Lines Indicate Couplings. All Motion Confined to the Vertical Direction.

Representation of a Continuum of Bath Oscillators
Caldeira-Leggett Example: Resistively Shunted Josephson Junction and Luttinger Liquid

- Caldeira-Leggett has been used to describe tunnelling in the presence of dissipation after modification of system potential. Resistively shunted Josephson junctions.
- Bosonic excitations of a Luttinger liquid have also been treated this way.

Figure: Circuit Diagram for Resistively Shunted Josephson Junction
Cold-Trapped Ions as Realizations of Caldeira-Leggett

- Ions can be trapped in a Paul trap using the ponderomotive force in various types of cavities.
- Harmonic potential and interaction with potentially noisy environment.

Figure: Apparatus for trapping an ion using r.f. fields. From Myatt et. al. *Nature.* 269-273. 2000
Solving the Caldeira-Leggett Model: Analogue of Van-Kampen Modes

▶ Guess solutions like $\sim e^{-iut}$.

▶ Typically there are no discrete eigenvalues.

▶ Instead there are continuum eigenmodes, for each real u:

$$q_u(x) = \text{PV} \frac{Q_uf(x)}{u^2 - x^2} + C_u Q_u \delta(|u| - x).$$

$$C_u = \frac{u^2 - \Omega^2_c}{\Omega f(|u|)} - \int_{\mathbb{R}} dx \frac{f(|x|)^2}{2(u - x)f(|u|)}.$$

▶ Here Q_u is an arbitrary amplitude. The other continuum eigenmodes can be formally solved for using the eigenvalue equations.
Partial Solution of Caldeira-Leggett Through Eigenfunctions

- The amplitudes $\frac{\partial Q_u}{\partial t} = -iut Q_u$. Gives a solution to Caldeira-Leggett.

$$q(x, t) = \int_\mathbb{R} du \frac{Q_u x f(x)}{u^2 - x^2} e^{-iut} + \int_\mathbb{R} du C_u Q_u \delta(|u| - x) e^{-iut}$$

$$Q(t) = \int_\mathbb{R} du Q_u e^{-iut},$$

$$p(x, t) = -\int_\mathbb{R} du \frac{iQ_u x f(x)}{u^2 - x^2} e^{-iut} - \int_\mathbb{R} du \frac{iu}{x} C_u Q_u \delta(|u| - x) e^{-iut}$$

$$P(t) = -\int_\mathbb{R} du \frac{iu}{\Omega} Q_u e^{-iut},$$
Transformation from Q_u can be Written Using Singular Integral Operators

- Make the definitions:

$$H[g](v) = \frac{1}{\pi} \int_{\mathbb{R}} dx \frac{g(x)}{x - v}.$$

$$\epsilon_I = \pi f(x)^2 \text{sgn}(x) \quad \text{and} \quad \epsilon_R = 2\frac{x^2 - \Omega_c^2}{\Omega} + \pi H[f(|x|)^2].$$

$$T_+[h](u) := \epsilon_R h(|u|) + \epsilon_I H[h(|x|)](u),$$

$$T_-[h](u) := \epsilon_R h(|u|) + \epsilon_I H[\text{sgn}(x)h(|x|)](u).$$

- Then the previous transformation from Q_u to $(q(x), Q)$ can be written in terms of the symmetric part of Q_u, which is called Q_{u+}:

$$l_c[Q+] := \left(\frac{1}{f(x)} T_+[Q_{u+}], 2 \int_{\mathbb{R}_+} du Q_{u+}\right).$$
Let $h(t)$ be a function defined on \mathbb{R}. Then the define $\phi(z)$ by the Cauchy integral:

$$\phi(z) = \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{h(t)dt}{t - z}$$

This function is sectionally analytic in the lower and upper half plane. At the real axis there is a jump discontinuity:

$$\phi_+(t) - \phi_-(t) = h(t) \quad \phi_+(t) + \phi_-(t) = -H[h](t)$$

Therefore the function $h(t) + iH[h](t)$ is the boundary value of an analytic function in the upper half plane, and $h(t) - iH[h](t)$ is the boundary value of an analytic function in the lower half plane, for any h.

Can write elements of the transformation in this form.
Inverting the Transform Using the Generalized Liouville Theorem

- Must solve for Q_{u+}:

$$f(x)q(x) = \epsilon_R Q_{u+} + \epsilon_I H[Q_{u+}]$$

- Subject to the constraints Q_{u+} is symmetric and $2 \int_{\mathbb{R}^+} Q_u du = Q$.

- Replace each term as a sum of an analytic function in the upper half plane and an analytic function in the lower half plane.

- Isolate all the upper half plane terms onto the opposite side of all the lower half plane terms.

- The two sides collectively define an entire function.

- Apply generalized Liouville theorem: An entire function with a growth rate of z^n at infinity is a polynomial of degree n.

- Choose the polynomial to satisfy the constraints.
To this write the inverse transformation define:

\[\hat{T}_+ [h](u) := \frac{\epsilon_R}{|\epsilon|^2} h(u) - \frac{\epsilon_I}{|\epsilon|^2} H[h(|x|)](u), \]

\[\hat{T}_- [h](u) := \frac{\epsilon_R}{|\epsilon|^2} h(u) - \frac{\epsilon_I}{|\epsilon|^2} H[\text{sgn}(x) h(|x|)](u). \]

\[Q_{u+} = \hat{I}_c[q(x), Q] = \hat{T}_+[f(x)q(x)] + \frac{2u}{\pi \Omega} \frac{\epsilon_I}{|\epsilon|^2} Q. \]

\[\bar{Q}(u) = \sqrt{\frac{\pi}{|\epsilon|^2}} \epsilon_I Q_{u+} = \sqrt{\frac{\pi}{|\epsilon|^2}} \epsilon_I \hat{T}_+[f(x)q(x)] + \frac{2u}{\Omega} \sqrt{\frac{|\epsilon_I|}{\pi |\epsilon|^2}} Q. \]

Armed with a transformation from \((q(x), Q)\) to \(\bar{Q}(u)\), we use a canonical transformation to complete the diagonalization of the Caldeira-Leggett model.
Canonical Transformation

Define the type-2 mixed variable generating functional:

\[\mathcal{F}[q, Q, \bar{P}] = \int_{\mathbb{R}^+} \bar{P} \sqrt{\frac{\pi}{|\epsilon|^2}} \epsilon_l \hat{I}[q(x), Q] \]

Then the rest of the transformation is:

\[p(x) = \frac{\delta \mathcal{F}}{\delta q} = f(x) \hat{T}_+^\dagger \left[\sqrt{\frac{\pi|\epsilon|^2}{\epsilon_l}} \bar{P} \right] \]

\[P = \frac{\partial \mathcal{F}}{\partial Q} = \int_{\mathbb{R}^+} du \frac{2u\bar{P}}{\Omega} \sqrt{\frac{\epsilon_l}{\pi|\epsilon|^2}} \]

\[\bar{P} = \sqrt{\frac{\pi|\epsilon|^2}{\epsilon_l}} \left(\hat{T}_- [f(x)p(x)] + \frac{2}{\pi} \frac{\epsilon_l}{|\epsilon|^2} P \right) \]
New Hamiltonian: Pure Continuum of Harmonic Oscillators

- New variables \bar{P} and \bar{Q}

\[
\bar{P} = \sqrt{\frac{\pi|\epsilon|^2}{\epsilon_l}} \left(\hat{T}_- [f(x)p(x)] + \frac{2}{\pi} \frac{\epsilon_l}{|\epsilon|^2} P \right)
\]

\[
\bar{Q} = \sqrt{\frac{\pi|\epsilon|^2}{\epsilon_l}} \left(\hat{T}_+ [f(x)q(x)] + \frac{2u}{\pi \Omega} \frac{\epsilon_l}{|\epsilon|^2} Q \right).
\]

- On direct substitution, these variables convert the Hamiltonian of the Caldeira-Leggett model into a pure continuum of harmonic oscillators with Hamiltonian:

\[
H[\bar{Q}, \bar{P}] = \int_{\mathbb{R}^+} \frac{du}{2} \left(\bar{Q}(u)^2 + \bar{P}(u)^2 \right)
\]

- These transformations allow the Caldeira-Leggett model to be solved exactly.
Damping in the Caldeira-Leggett Model

- Consider an initial condition in the Caldeira-Leggett model.
- There is a corresponding initial condition $\bar{Q}(u, 0), \bar{P}(u, 0)$.
- The solution in terms of these variables is:

$$
\bar{Q}(u, t) = \bar{Q}(u, 0)\cos(ut) + \bar{P}(u, 0)\sin(ut)
$$

$$
\bar{P}(u, t) = \bar{P}(u, 0)\cos(ut) - \bar{Q}(u, 0)\sin(ut)
$$

- From this,

$$
Q(t) = \int_{\mathbb{R}_+} \frac{2u}{\Omega} \sqrt{\frac{e_l}{\pi |\epsilon|^2}} (\bar{Q}(u, 0)\cos(ut) + \bar{P}(u, 0)\sin(ut))
$$

- By the Riemann-Lebesgue lemma this decays to zero with time.

- Damping is continuum damping.

- Completely analogous calculation can be made to Landau damping of a plasma. The damping here has the nature of Landau damping.
Consider the linearized Vlasov-Poisson equation in Fourier space:

\[
\frac{\partial f_k}{\partial t} - ikvf_k - \frac{4\pi ie^2}{mk} f'_0(v) \int_{\mathbb{R}} dv f_k = 0.
\]

There is a transformation, due to Morrison, that allows the exact solution of the Vlasov-Poisson equation:

\[
\epsilon_I(v) = -\frac{4\pi^2 e^2 f'_0}{mk^2 \int_{\mathbb{R}} dv f_0}, \quad \epsilon_R(v) = 1 + H[\epsilon_I],
\]

\[
G_k[f] = \epsilon_R f + \epsilon_I H[f] \quad \text{and} \quad \hat{G}_k[f] = \frac{\epsilon_R}{|\epsilon|^2} f - \frac{\epsilon_I}{|\epsilon|^2} H[f].
\]

\[
Q_k(u) = \hat{G}_k[f_k] \text{ satisfies } \frac{\partial Q_k(u)}{\partial t} = -iukQ_k(u).
\]

This makes it possible to identify solutions of Caldeira-Leggett with Vlasov-Poisson and vice-versa.
Plasma Echo: An Inspiration for an Application?

- In plasmas the density or electric field is typically measured. How do we know that the phase space structure of the distribution function is preserved?
- Using weakly nonlinear Vlasov theory, two perturbations, separated by time \(t = \tau \) of the electric field that have Landau damped may interact and cause the re-appearance of the electric field at some later time \(t \).
- The plasma echo was predicted and observed in the 1960s.
- The strength of the echo makes it possible to determine the collisionality.
- Could it be possible to observe some type of echo effect in the Caldeira-Leggett model?
Echo Effect in the Caldeira-Leggett Model

- Relying on the linear theory, and echo may be triggered by driving the bath.
- Suppose the bath Hamiltonian depends on a parameter:
 \[H[q(x), p(x)] = \int \frac{dx}{2} (c(t)q(x)^2 + p(x)^2) \]
- Let \(c(t) = 1 + c\delta(t - \tau) \), which implies that the bath is driven by a strong impulse.
- At \(t = \tau \) the bath coordinates are transformed.
 \[q(x, \tau) = q(x, \tau), \quad p(\tau) = p(\tau) - cq(\tau). \]
- Result is partial time reversal of the evolution:
 \[
 \frac{\partial q(x, \tau)}{\partial t} = xp(x, \tau) - cxq(x, \tau)
 \]
 \[
 \frac{\partial p(x, \tau)}{\partial t} = -xq(x, \tau) + cx/2(p(x, \tau) - p(x, \tau))
 \]
- At time \(t = 2\tau \) there is an echo and the initial perturbation to \(Q \) is recovered, with magnitude \(c \).
Candidate Systems: Bose-Einstein Condensate

- Caldeira-Leggett is used for a large number of types of systems, with widely varying types of baths.

- One intriguing (highly speculative) possibility is the interaction of a Bose-Einstein condensate with a neutral atom trapped in an optical lattice.

- Confinement of neutrals due to AC Stark effect. Shift of ground state energy. Harmonic potentials possible.

- Bose-Einstein condensate can coexist with confined neutrals.

- Study interaction of a neutral (system) with the bath (excitations of the BEC).

- Drive the Bose-Condensate with a laser to trigger an echo.
Diagram of Optical Lattice

- There are a large number of possible choices for this configuration, including components for the BEC, the neutrals, the optical lattice, and the method of excitation.

Figure: Optical lattice with trapped neutrals. Imposition of Bose-Einstein condensate could lead to realization of the Caldeira-Leggett model through interaction with Bose-Einstein spectrum. Figure from NIST.
Conclusion

- Found a transformation that allows for the exact solution of the Caldeira-Leggett model.

- Use diagonalization to explain the damping in the Caldeira-Leggett model as continuum damping.

- Established an exact equivalence with the linearized Vlasov-Poisson equation.

- Suggested the existence of an echo in the Caldeira-Leggett model.

- Detection and use of echoes could lead to a large variety of interesting experiments in systems described by the Caldeira-Leggett model.